The I4U Mega Fusion and Collaboration for NIST Speaker Recognition
نویسندگان
چکیده
The 2016 speaker recognition evaluation (SRE’16) is the latest edition in the series of benchmarking events conducted by the National Institute of Standards and Technology (NIST). I4U is a joint entry to SRE’16 as the result from the collaboration and active exchange of information among researchers from sixteen Institutes and Universities across 4 continents. The joint submission and several of its 32 sub-systems were among topperforming systems. A lot of efforts have been devoted to two major challenges, namely, unlabeled training data and dataset shift from Switchboard–Mixer to the new Call My Net dataset. This paper summarizes the lessons learned, presents our shared view from the sixteen research groups on recent advances, major paradigm shift, and common tool chain used in speaker recognition as we have witnessed in SRE’16. More importantly, we look into the intriguing question of fusing a large ensemble of sub-systems and the potential benefit of large-scale collaboration.
منابع مشابه
The I4U Mega Fusion and Collaboration for NIST Speaker Recognition Evaluation 2016
The 2016 speaker recognition evaluation (SRE’16) is the latest edition in the series of benchmarking events conducted by the National Institute of Standards and Technology (NIST). I4U is a joint entry to SRE’16 as the result from the collaboration and active exchange of information among researchers from sixteen Institutes and Universities across 4 continents. The joint submission and several o...
متن کاملQuality measures based calibration with duration and noise dependency for speaker recognition
This paper studies the effect of short utterances and noise on the performance of automatic speaker recognition. We focus on calibration aspects, and propose a calibration strategy that uses quality measures to model the calibration parameters. We carry out the proposed calibration by using simple Quality Measure Functions (QMFs) of duration and measured signal-to-noise-ratio from speech segmen...
متن کاملI4u submission to NIST SRE 2012: a large-scale collaborative effort for noise-robust speaker verification
I4U is a joint entry of nine research Institutes and Universities across 4 continents to NIST SRE 2012. It started with a brief discussion during the Odyssey 2012 workshop in Singapore. An online discussion group was soon set up, providing a discussion platform for different issues surrounding NIST SRE’12. Noisy test segments, uneven multi-session training, variable enrollment duration, and the...
متن کاملProceedings of Biometric Technologies in Forensic Science
This paper presents the performance evaluation of i-vector and PLDA based speaker recognition system which incorporate quality measures function (QMF) in linear calibration. Evaluated on the recent NIST SRE’12 corpus, the linear calibration with QMF as the additional term shows a positive gain in the system performance compared to the conventional linear calibration with only two terms. Based o...
متن کاملFusion of Acoustic and Tokenization Features for Speaker Recognition
This paper describes our recent efforts in exploring effective discriminative features for speaker recognition. Recent researches have indicated that the appropriate fusion of features is critical to improve the performance of speaker recognition system. In this paper we describe our approaches for the NIST 2006 Speaker Recognition Evaluation. Our system integrated the cepstral GMM modeling, ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017